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Abstract
Impermeability of the ascending limb of the Henle loop for water is traditionally regarded as 
essential for countercurrent multiplication in the kidney. Similar claims have been made about 
permeability properties of the collecting duct and some other epithelia. It is not clear, however, 
how a structure based on phospholipid bilayers can be water-impermeant if phospholipid 
bilayers themselves have measurable permeability. The presence of two membranes separated 
by the cytoplasm may only account for a several-fold reduction in permeability compared to 
a single bilayer. By analyzing published data, we conclude that these tubules do have a finite 
water permeability, especially the collecting duct. Although the results on isolated ascending 
limbs vary among authors, osmotic shock experiments clearly indicate that both the collecting 
duct and the ascending Henle loop are sufficiently water-permeable to observe volume 
regulation effects. We conclude that these epithelia by themselves do not display unusual 
resistance to water flow; it can be estimated that 20-50% of the fluid entering the tubules can 
be reabsorbed into a strongly hypertonic medulla. It is possible, however, that unstirred layers 
in the intact kidney may contribute to the apparent low permeability of the tubules.

Introduction

The belief that the ascending loop of Henle and unstimulated collecting duct are 
impermeable to water is widely shared by physiologists; it is stated as a matter of course in 
most textbooks [1-3] and in scientific literature [4-6]. The biological significance of water-
impermeant epithelia is that while ions are being removed from the filtrate by various 
transporters, water is unable to follow ions by osmosis, and the fluid becomes hypotonic. A 
similar process is responsible for the production of hypotonic saliva [7].
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But even pure lipid membranes are permeable to water to some extent, with osmotic 
permeabilities Pf in the range of 10 – 160 µm/s [8, 9] (see [10] for the explanation of 
permeability); how can it be that some epithelia are not? This question has drawn interest 
from researchers, who pointed out the potential importance of membrane asymmetry, 
integral proteins, and mucins [11-13]. To that, we would like to add a few additional 
considerations.

1. Single membrane vs. epithelium. 
When comparing the permeability of a phospholipid bilayer with that of a simple 

epithelium, we must account for the presence of two membranes in the latter (apical and 
basolateral) separated by cytoplasm. For simplicity, we can assume that both membranes 
are identical and separated by the distance h = 7 µm [14]; the diffusion coefficient of water 
Dw in the cytoplasm has been estimated at 400 µm2/s [15-17]. For a single membrane, the 
steady state water flux is expressed as

In the case of a three-layer epithelium, the expression changes to

which can be derived by equating water fluxes through each of the three compartments 
or by using the rule for calculating the combined permeability of membranes in series [18]:

Therefore, the additional barriers present in the epithelium slow down water transport 
by the factor of

For the values of Pf listed above, this ratio ranges from 2.2 to 4.8. Although this may 
partly explain the difference between a single membrane and an epithelium (for example, 
higher values in vesicles isolated from the medullary thick ascending limb (MTAL) than in 
intact MTAL [18]), most data on kidney permeability have been obtained on isolated tubules.

2. What values of permeabilities would qualify a membrane as water-impermeant? 
The rate of water permeation through a tube with length L and radius R and subjected 

to an osmolarity gradient DP is

where vw is the molar volume of water equal to 18 cm3/mol. The typical value of Pf for 
the medullary collecting duct (MCD) in the absence of vasopressin is 20 µm/s [18-20]; some 
authors have obtained slightly higher [21] or slightly lower [22, 23] values. The permeability 
of 20 µm/s is regarded as low: “Pf greater than 0.01 cm/sec (at 25–37°C) is considered to be 
high and suggests the involvement of molecular water channels, whereas Pf less than 0.005 
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cm/sec is consistent with water diffusion through the lipid portion of a membrane” [24]. 
However, assuming R = 12 µm, L = 104 µm [25], and DP = 0.5 mol/L during diuresis [26], we 
find the rate of water removal by a single collecting duct on the order of 6 nl/min, which is 
comparable to the estimated flow rate Fin = 14 nl/min [25]. In other words, almost half of the 
fluid entering the MCD and destined for elimination is expected to be reabsorbed, even in the 
“water-impermeable” state of the duct.

The permeability of MTAL has also been a focus of much research. Rocha and Kokko [27] 
found its permeability close to zero; however, the standard error of their measurements was 
4-6 µm/s. The results of Sasaki and Imai [28] were similar. The accuracy of those estimates 
may have been compromised by using fast perfusion rates [29]. Other measurements have 
produced a wide range of values from 0.07 µm/s [30] to 5 µm/s [23] or between 6 µm/s and 
23 µm/s (cited in [29]).

Using the conservative estimate Pf  = 1 µm/s and the parameters R = 15 µm, L = 2∙104 
µm, and DP = 1 mol/L, we find that the leak through the walls would amount to 2 nl/min, or 
about a quarter of the total flow of 8 nl/min [25]. Here, once again, epithelial impermeability 
does not directly follow from the data.

3. Cell volume regulation.
A separate body of work has focused on cell volume regulation - restoration of cell water 

content following either osmotic swelling (regulatory volume decrease, or RVD) or osmotic 
shrinkage (regulatory volume increase, RVI). The RVI and RVD are secondary responses 
to osmolarity changes caused by the activation of membrane channels for ions or organic 
osmolytes [31]; but to initiate these responses, the membrane must be permeable to water 
in the first place.

The numerous reports of volume regulatory responses in the collecting duct [19, 32-
35] and in the ascending loop [36 – 40] provide compelling evidence that these cells are 
sufficiently permeable to water, as are all other mammalian cells. A single publication 
claiming the lack of swelling of cheek epithelial cells in hypotonic solutions [41] may have 
resulted from unnoticed rapid RVD that develops and subsides within a minute (according 
to our unpublished observations).

Conclusion

The presented brief review suggests that “water-impermeable” kidney epithelia do 
not possess watertight properties significantly beyond those expected from phospholipid 
bilayers. Their permeabilities are indeed two orders of magnitude less than the permeability 
of the thin descending loop [42, 43], which can be due to the lack of water channels, but are 
similar to those of many other cell types [8, 18, 44-48]. When comparing Pf values for epithelia 
and isolated lipid layers, the presence of an additional membrane and the cytoplasm should 
be taken into account; additionally, the effects of unstirred layers can be significant even in 
perfused tubule preparations [18, 43] and are expected to be particularly prominent in the 
interstitium of the kidney [49]. Indeed, a several-fold difference between in vivo and in vitro 
permeabilities of the salivary duct has been reported [50]. Conceivably, slow convection and 
dissipation of osmolality gradients can be a factor in water retention.

The main question, however, is whether the diluting function of the nephron and the 
effective diuresis require that MTAL and unstimulated MCD be strictly water-impermeable. 
It seems that the existing mathematical models assume zero permeabilities of both the thin 
and thick ascending loops [51-55], and the possibility of deviations from zero have not been 
considered. That would be an interesting question to investigate.
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